ERLANG

Common Test

Copyright © 2003-2024 Ericsson AB. All Rights Reserved.
Common Test 1.26.2.1

October 9, 2024

Copyright © 2003-2024 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

October 9, 2024

1.1 Introduction

1 Common Test User's Guide

1.1 Introduction

1.1.1 Scope

Conmmon Test isaportable application for automated testing. It is suitable for:

» Black-box testing of target systems of any type (that is, not necessarily implemented in Erlang). Thisis performed
through standard O& M interfaces (such as SNMP, HTTP, CORBA, and Telnet) and, if necessary, through user-
specific interfaces (often called test ports).

e White-box testing of Erlang/OTP programs. Thisis easily done by calling the target API functions directly from
the test case functions.

Common Test aso integrates use of the OTP cover tool in application Tools for code coverage analysis of Erlang/
OTP programs.

Conmmon Test executestest suite programs automatically, without operator interaction. Test progress and results are
printedtologsin HTML format, easily browsed with astandard web browser. Conmon Test also sends notifications
about progress and results through an OTP event manager to event handlers plugged in to the system. Thisway, users
can integrate their own programs for, for example, logging, database storing, or supervision with Cormon Test .

Common Test provides libraries with useful support functions to fill various testing needs and requirements. There
is, for example, support for flexible test declarations through test specifications. There is also support for central
configuration and control of multiple independent test sessions (to different target systems) running in parallel.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language.

1.2 Common Test Basics

1.2.1 General

The Conmon Test framework is atool that supports implementation and automated execution of test cases to any
types of target systems. Conmon Test isthe main tool being used in al testing- and verification activities that are
part of Erlang/OTP system development and maintenance.

Test cases can be executed individually or in batches. Conmon Test also features a distributed testing mode with
central control and logging. With this feature, multiple systems can be tested independently in one common session.
Thisisuseful, for example, when running automated large-scale regression tests.

The System Under Test (SUT) can consist of one or more target nodes. Cormon Test contains ageneric test server
that, together with other test utilities, is used to perform test case execution. The tests can be started from a GUI,
from the OS shell, or from an Erlang shell. Test suites are files (Erlang modules) that contain the test cases (Erlang
functions) to be executed. Support modules provide functions that the test cases use to do the tests.

In a black-box testing scenario, Conmon Test -based test programs connect to the target system(s) through
standard O&M and CLI protocols. Common Test provides implementations of, and wrapper interfaces to, some
of these protocols (most of which exist as standalone components and applications in OTP). The wrappers simplify
configuration and add verbosity for logging purposes. Conmon Test is continuously extended with useful support

Ericsson AB. All Rights Reserved.: Common Test | 1

1.2 Common Test Basics

modules. However, notice that it is a straightforward task to use any Erlang/OTP component for testing purposes with
Conmon Test , without needing a Conmon Test wrapper for it. It is as simple as calling Erlang functions. A
number of target-independent interfaces are supported in Cormon Test , such as Generic Telnet and FTP. These can
be specialized or used directly for controlling instruments, traffic load generators, and so on.

Common Test isalsoavery useful tool for white-box testing Erlang code (for example, module testing), as the test
programs can call exported Erlang functionsdirectly. Thereisvery little overhead required for implementing basic test
suites and executing simple tests. For black-box testing Erlang software, Erlang RPC and standard O&M interfaces
can be used for example.

A test case can handle several connectionsto one or more target systems, instruments, and traffic generatorsin parallel
to perform the necessary actions for atest. The handling of many connectionsin parallel is one of the major strengths
of Cormon Test , thanks to the efficient support for concurrency in the Erlang runtime system, which Conmon
Test users can take great advantage of.

1.2.2 Test Suite Organization

Test suites are organized in test directories and each test suite can have a separate data directory. Typically, thesefiles
and directories are version-controlled similar to other forms of source code (possibly by aversion control system like
GIT or Subversion). However, Conrmon Test does not itself put any requirements on (or has any awareness of)
possible file and directory versions.

1.2.3 Support Libraries

Support libraries contain functions that are useful for all test suites, or for test suites in a specific functiona area or
subsystem. In addition to the general support libraries provided by the Cormon Test framework, and the various
libraries and applications provided by Erlang/OTP, there can also be a need for customized (user specific) support
libraries.

1.2.4 Suites and Test Cases

Testing is performed by running test suites (sets of test cases) or individual test cases. A test suiteisimplemented asan
Erlang modulenamed <sui t e_nane>_SUl TE. er | which containsanumber of test cases. A test caseisan Erlang
function that tests one or more things. The test caseisthe smallest unit that the Cormon Test test server dealswith.

Setsof test cases, called test case groups, can also be defined. A test case group can have execution properties associated
with it. Execution properties specify if the test cases in the group are to be executed in random order, in parallel, or
in sequence, and if the execution of the group is to be repeated. Test case groups can also be nested (that is, a group
can, besides test cases, contain subgroups).

Besides test cases and groups, the test suite can also contain configuration functions. These functions are meant to
be used for setting up (and verifying) environment and state in the SUT (and/or the Cormon Test host node),
required for the tests to execute correctly. Examples of operations are: Opening a connection to the SUT, initializing
a database, running an installation script, and so on. Configuration can be performed per suite, per test case group,
and per individual test case.

The test suite module must conform to a callback interface specified by the Cormon Test test server. For details,
see section Writing Test Suites.

A test case is considered successful if it returns to the caller, no matter what the returned value is. However, a few
return values have special meaning as follows:

* {ski p, Reason} indicatesthat the test case is skipped.
e {coment, Conment } printsacomment in thelog for the test case.
« {save_config, Confi g} makesthe Conmon Test test server pass Conf i g to the next test case.

2 | Ericsson AB. All Rights Reserved.: Common Test

1.2 Common Test Basics

A test case failure is specified as a runtime error (a crash), no matter what the reason for termination is. If you use
Erlang pattern matching effectively, you can take advantage of this property. The result is concise and readable test
case functions that ook much more like scripts than actual programs. A simple example:

session(_Config) ->
{started, Serverld} = ny_server:start(),
{clients,[]} = ny_server:get_clients(Serverld),
MWid = self(),
connected = my_server:connect(Serverld, Mld),
{clients,[MId]} = nmy_server:get_clients(Serverld),
di sconnected = ny_server:di sconnect (Serverld, Mld),
{clients,[]} = ny_server:get_clients(Serverld),
stopped = ny_server:stop(Serverld).

Asatest suiteruns, al information (including output to st dout) isrecorded in many different log files. A minimum
of information is displayed in the user console (only start and stop information, plus a note for each failed test case).

Theresult from each test caseisrecorded in adedicated HTML log file, created for the particul ar test run. An overview
page displays each test case represented by atable row showing total execution time, if the case was successful, failed,
or skipped, plus an optiona user comment. For a failed test case, the reason for termination is aso printed in the
comment field. The overview page has alink to each test caselog file, providing simple navigation with any standard
HTML browser.

In the last row where totals are presented the time shown here is a sum of rows, which are above (not accounting
for parallel testcases). On the other hand "Elapsed Time" is a clock time spent to run testcases.

1.2.5 External Interfaces

The Conmon Test test server requires that the test suite defines and exports the following mandatory or optional
callback functions:

all ()

Returns alist of all test cases and groups in the suite. (Mandatory)
suite()

Information function used to return properties for the suite. (Optional)
groups()

For declaring test case groups. (Optional)
init_per_suite(Config)

Suite level configuration function, executed before the first test case. (Optional)
end_per _suite(Config)

Suite level configuration function, executed after the last test case. (Optional)
gr oup(G oupNane)

Information function used to return properties for atest case group. (Optional)
init_per_group(G oupNanme, Config)

Configuration function for a group, executed before the first test case. (Optional)

Ericsson AB. All Rights Reserved.: Common Test | 3

1.3 Getting Started

end_per _group(G oupNane, Config)

Configuration function for a group, executed after the last test case. (Optional)
i nit_per_testcase(Test Case, Config)

Configuration function for atestcase, executed before each test case. (Optional)
end_per _testcase(Test Case, Config)

Configuration function for a testcase, executed after each test case. (Optional)
For each test case, the Cormon Test test server expects the following functions:
Testcasename()

Information function that returns alist of test case properties. (Optional)
Testcasename(Config)

The test case function.

1.3 Getting Started

1.3.1 Introduction for Newcomers

The purpose of this section is to let the newcomer get started in quickly writing and executing some first simple tests
with a"learning by example" approach. Most explanations are | eft for later sections. If you are not much into "learning
by example" and prefer more technical details, go ahead and skip to the next section.

This section demonstrates how simple it is to write a basic (yet for many module testing purposes, often sufficiently
complex) test suite and execute its test cases. This is not necessarily obvious when you read the remaining sections
in this User's Guide.

To understand what is discussed and examplified here, we recommended you to first read section Common Test
Basics.

1.3.2 Test Case Execution

Execution of test casesis handled as follows:

4 | Ericsson AB. All Rights Reserved.: Common Test

1.3 Getting Started

fest case A case A case B fesf case B faifs
refurns ok because of Reason
CT worker CT worker CT worker

crashes:
{EXIT ,Reason}

. rocess
exits normally P

« Log file ¥
@ case A ‘ "Successful”
@ case B ‘ "Failed: Reason”

Figure 3.1: Successful and Unsuccessful Test Case Execution

For each test case that Conmon Test is ordered to execute, it spawns a dedicated process on which the test case
function starts running. (In parallel to the test case process, an idle waiting timer process is started, which is linked
to the test case process. If the timer process runs out of waiting time, it sends an exit signal to terminate the test case
process. Thisis called atimetrap).

In scenario 1, the test case process terminates normally after case A has finished executing its test code without
detecting any errors. The test case function returns avalue and Conmon Test logs the test case as successful.

In scenario 2, an error is detected during test case B execution. This causesthetest case B function to generate
an exception and, as a result, the test case process exits with reason other than normal. Cormon Test logs this as
an unsuccessful (Failed) test case.

As you can understand from the illustration, Cormon Test requires a test case to generate a runtime error to
indicate failure (for example, by causing abad match error or by callingexi t / 1, preferably through the help function
ct:fail/1, 2). A successful execution isindicated by anormal return from the test case function.

1.3.3 A Simple Test Suite

Asshown in section Common Test Basics, thetest suite modul eimplements callback functions (mandatory or optional)
for various purposes, for example:

e |nit/end configuration function for the test suite

« Init/end configuration function for atest case

« Init/end configuration function for atest case group

e Testcases

Ericsson AB. All Rights Reserved.: Common Test | 5

1.3 Getting Started

The configuration functions are optional. The following example is a test suite without configuration functions,
including one simple test case, to check that module mynod exists (that is, can be successfully loaded by the code
server):

- modul e(nmylst _SUl TE) .
-conpi |l e(export_all).

all () ->
[mod_exi sts].

nod_exi sts(_) ->
{odul e, nynod} = code:load_file(mnod).

If the operation fails, a bad match error occurs that terminates the test case.

1.3.4 A Test Suite with Configuration Functions

If you need to perform configuration operations to run your test, you can implement configuration functions in your
suite. The result from a configuration function is configuration data, or Conf i g. Thisis alist of key-value tuples
that get passed from the configuration function to the test cases (possibly through configuration functions on "lower
level"). The data flow looks as follows:

6 | Ericsson AB. All Rights Reserved.: Common Test

1.3 Getting Started

init per suite(InitConfig)
Ceonfig
——————» 1hit per testcocase|testocasel, Config)

Ceonfigd
@ LCestcasel (Configl)

¥
I end per testcase (testcasel,Configl)

Ceonfig
— 1N1it per testcase (testoasell, Config)

Coonfighf
——. CLEStCoasel (Confighl)

¥
end per testcase (testcasel, ConfigN)

¥

end per suite(Config)

Figure 3.2: Configuration Data Flow in a Suite

The following example shows a test suite that uses configuration functions to open and close a log file for the test
cases (an operation that is unnecessary and irrelevant to perform by each test case):

Ericsson AB. All Rights Reserved.: Common Test | 7

1.3 Getting Started

- modul e(check_l og_SU TE) .

-export([all/0, init_per_suite/l, end_per_suite/1]).
-export([check_restart_result/1, check_no_errors/1]).
-define(val ue(Key, Config), proplists:get_val ue(Key, Config)).

all () -> [check_restart_result, check_no_errors].

init_per_suite(lnitConfigData) ->
[{I| ogref,open_log()} | InitConfigData].

end_per_suite(ConfigbData) ->
cl ose_l og(?val ue(l ogref, ConfigData)).
check_restart_result(ConfigData) ->
TestData = read_l og(restart, ?value(logref, ConfigData)),
{match, _Line} = search_for("restart successful", TestData).
check_no_errors(ConfigbData) ->
TestData = read_l og(all, ?value(logref, ConfigData)),
case search_for("error", TestData) of
{match, Line} -> ct:fail({error_found_in_| og, Line});

nomat ch -> ok
end.

The test cases verify, by parsing alog file, that our SUT has performed a successful restart and that no unexpected
errors are printed.

To execute the test cases in the recent test suite, type the following on the UNIX/Linux command line (assuming that
the suite module isin the current working directory):

$ ct_run -dir .

or:

$ ct_run -suite check_| og_SU TE

To use the Erlang shell to run our test, you can evaluate the following call:

1> ct:run_test([{dir, "."}]).

or:

1> ct:run_test([{suite, "check_log SU TE"}]).

Theresult from running the test is printed in log filesin HTML format (stored in unique log directories on a different
level). The following illustration shows the log file structure:

8 | Ericsson AB. All Rights Reserved.: Common Test

1.3 Getting Started

.
top level log dir test run top dir test dir test case dir
TEST RUN | | |
HISTORY | | |
TEST
all runs.html SUITE
OVERVIEW
index.html
.\ index.html y.

Figure 3.3: HTML Log File Structure

1.3.5 Questions and Answers

Here follows some questions that you might have after reading this section with corresponding tips and links to the
answers:

e Question: "How and where can | specify variable datafor my tests that must not be hard-coded in the test suites
(such as hostnames, addresses, and user login data)?"

Answer: See section External Configuration Data.

* Question: "Isthere away to declare different tests and run them in one session without having to write my own
scripts? Also, can such declarations be used for regression testing?”'

Answer: See section Test Specificationsin section Running Tests and Analyzing Results.
* Question: "Can test cases and/or test runs be automatically repeated?'

Answer: Learn more about Test Case Groups and read about start flags/options in section Running Testsand in
the Reference Manual.

e Question: "Does Conmon Test execute my test casesin sequence or in parallel?"

Answer: See Test Case Groupsin section Writing Test Suites.
e Question: "What is the syntax for timetraps (mentioned earlier), and how do | set them?"

Answer: Thisisexplained in the Timetrap Time-Outs part of section Writing Test Suites.
* Question: "What functions are available for logging and printing?"'

Answer: SeeLogging in section Writing Test Suites.
* Question: "l need datafilesfor my tests. Where do | store them preferably?"

Answer: See Data and Private Directories.
e Question: "Can | start with atest suite example, please?"

Answer: Welcome!

Ericsson AB. All Rights Reserved.: Common Test | 9

1.4 Installation

Y ou probably want to get started on your own first test suites now, while at the same time digging deeper into the
Conmmon Test User's Guide and Reference Manual. There are much more to learn about the things that have been
introduced in this section. There are also many other useful featuresto learn, so please continue to the other sections
and have fun.

1.4 Installation

1.4.1 General Information

The two main interfaces for running tests with Conmmon Test are an executable program named ct _r un and the
Erlang modulect . ct _r un iscompiled for the underlying operating system (for example, Unix/Linux or Windows)
during the build of the Erlang/OTP system, and is installed automatically with other executable programs in the top
level bi n directory of Erlang/OTP. Thect interface functions can be called from the Erlang shell, or from any Erlang
function, on any supported platform.

The Common Test application isinstalled with the Erlang/OTP system. No extrainstallation step is required to start
using Cormon Test through thect _r un executable program, and/or the interface functionsin the ct module.

1.5 Writing Test Suites
1.5.1 Support for Test Suite Authors

The ct module provides the main interface for writing test cases. Thisincludes for example, the following:

* Functionsfor printing and logging

» Functionsfor reading configuration data

* Function for terminating a test case with error reason

* Function for adding commentsto the HTML overview page

For details about these functions, see modulect .

The Conmon Test application aso includes other modules named ct _<conponent >, which provide various
support, mainly simplified use of communication protocols such as RPC, SNMP, FTP, Telnet, and others.

1.5.2 Test Suites

A test suite is an ordinary Erlang module that contains test cases. It is recommended that the module has a name on
theform * _SUI TE. er | . Otherwise, the directory and auto compilation function in Conmon Test cannot locate
it (at least not by default).

It is also recommended that thect . hr | header fileisincluded in all test suite modules.

Each test suite module must export function al | / 0, which returns the list of all test case groups and test cases to
be executed in that module.

The callback functions to be implemented by the test suite are al listed in module ct_suite . They are also described
in more detail later in this User's Guide.

1.5.3 Init and End per Suite

Each test suite module can contain the optional configuration functions init_per_suite/1 and
end_per _sui t e/ 1. If theinit function is defined, so must the end function be.

Ifinit_per_suiteexists, itiscaledinitialy beforethetest cases are executed. It typically containsinitializations
common for al test casesin the suite, which are only to be performed once.i ni t _per _sui t e isrecommended for

10 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Writing Test Suites

setting up and verifying state and environment on the System Under Test (SUT) or the Conmron Test host node, or
both, sothat thetest casesin the suite executes correctly. Thefollowing areexamplesof initial configuration operations:

e Opening a connection to the SUT
e Initializing a database
e Running an installation script

end_per _sui t e iscaled as the fina stage of the test suite execution (after the last test case has finished). The
function is meant to be used for cleaning up afteri nit _per _suite.

init_per_suiteandend _per_suit e execute on dedicated Erlang processes, just like the test cases do. The
result of these functionsis however not included in the test run statistics of successful, failed, and skipped cases.

Theargument toi ni t _per _sui t e isConfi g, that is, the same key-value list of runtime configuration data that
each test case takes asinput argument. i ni t _per _sui t e can modify this parameter with information that the test
cases need. The possibly modified Conf i g list isthe return value of the function.

Ifi nit_per_suit e fails, al test casesin thetest suite are skipped automatically (so called auto skipped), including
end_per_suite.

Notice that if i nit _per _suite and end_per _sui t e do not exist in the suite, Common Test cals dummy
functions (with the same names) instead, so that output generated by hook functions can be saved to the log files for
these dummies. For details, see Common Test Hooks.

1.5.4 Init and End per Test Case

Each test suite module can contain the optional configuration functions i nit_per testcase/2 and
end_per _testcase/ 2. If theinit function is defined, so must the end function be.

Ifinit_per_testcase exists, itiscaled before each test case in the suite. It typically contains initialization that
must be done for each test case (analogtoi ni t _per _sui t e for the site).

end_per testcase/ 2 iscaled after each test case hasfinished, enabling cleanup afteri ni t _per _t est case.

If end_per _t est case crashes, however, test results are unaffected. At the same time, this occurrence is
reported in the test execution logs.

The first argument to these functions is the name of the test case. This value can be used with pattern matching in
function clauses or conditional expressions to choose different initialization and cleanup routines for different test
cases, or perform the same routine for many, or all, test cases.

The second argument is the Conf i g key-value list of runtime configuration data, which has the same value as the
listreturned by i nit _per _suite.init_per_testcase/ 2 can modify this parameter or returnit "asis'. The
returnvalueof i nit _per _t est case/ 2 ispassed as parameter Conf i g to the test case itself.

The return value of end_per _t est case/ 2 isignored by the test server, with exception of the save_confi g
andfail tuple.

end_per _t est case can check if the test case was successful. (which in turn can determine how cleanup is to
be performed). This is done by reading the value tagged with t c_st at us from Conf i g. The value is one of the
following:

e ok
« {failed, Reason}

whereReason isti netrap_ti meout , information from exi t / 1, or details of aruntime error
« {ski pped, Reason}

Ericsson AB. All Rights Reserved.: Common Test | 11

1.5 Writing Test Suites

where Reason is auser-specific term

Function end_per _testcase/2 is even caled if a test case terminates because of a cal to
ct:abort_current _testcase/ 1,orafter atimetraptime-out. However,end_per _t est case then executes
on adifferent process than the test case function. In this situation, end_per _t est case cannot change the reason
for test case termination by returning { f ai | , Reason} or save datawith{save_confi g, Dat a}.

The test case is skipped in the following two cases:

e Ifinit_per _testcase crashes(caled auto skipped).
« Ifinit_per_testcase returnsatuple{ski p, Reason} (caled user skipped).

The test case can also be marked as failed without executing it by returning a tuple {f ai | , Reason} from
i nit_per_testcase.

If init_per testcase crashes, or returns {skip, Reason} or {fail, Reason}, function
end_per _testcase isnot caled.

If it isdetermined during execution of end_per _t est case that the status of a successful test caseisto be changed
tofailed, end_per _t est case canreturnthetuple{f ai | , Reason} (where Reason describeswhy thetest case
fails).

Asinit_per_testcaseandend_per _t est case executeonthesameErlang processasthetest case, printouts
from these configuration functions are included in the test caselog file.

1.5.5 Test Cases

The smallest unit that the test server is concerned with is atest case. Each test case can test many things, for example,
make several calls to the same interface function with different parameters.

The author can choose to put many or few tests into each test case. Some things to keep in mind follows:

e Many small test cases tend to result in extra, and possibly duplicated code, aswell as slow test execution because
of large overhead for initializations and cleanups. Avoid duplicated code, for example, by using common help
functions. Otherwise, the resulting suite becomes difficult to read and understand, and expensive to maintain.

» Larger test cases make it harder to tell what went wrong if it fails. Also, large portions of test code risk being
skipped when errors occur.

» Readability and maintainability suffer when test cases become too large and extensive. It is not certain that the
resulting log files reflect very well the number of tests performed.

The test case function takes one argument, Conf i g, which contains configuration information such asdat a_di r
and pri v_di r. (For details about these, see section Data and Private Directories. The value of Conf i g at thetime
of the call, isthe same asthe return valuefromi ni t _per _t est case, mentioned earlier.

Thetest case function argument Conf i g isnot to be confused with the information that can be retrieved from the
configuration files (using ct: get _confi g/ 1/ 2). The test case argument Conf i g isto be used for runtime
configuration of the test suite and the test cases, while configuration files are to contain data related to the SUT.
These two types of configuration data are handled differently.

As parameter Confi g is a list of key-value tuples, that is, a data type caled a property list, it can be
handled by the proplists module. A value can, for example, be searched for and returned with function
proplists: get val ue/ 2. Also, or dternatively, the general |i sts module contains useful functions.

12 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Writing Test Suites

Normally, the only operations performed on Confi g are insertion (adding a tuple to the head of the list) and
lookup. To look up a value in the config, propl i sts: get_val ue can be used. For example: PrivDir =
proplists:get_value(priv_dir, Config).

If the test case function crashes or exits purposely, it is considered failed. If it returns a value (no matter what value),
it is considered successful. An exception to this rule is the return value { ski p, Reason} . If thistuple is returned,
the test caseis considered skipped and is logged as such.

If the test case returns the tuple { comrent , Comment } , the caseis considered successful and Commrent is printed
in the overview log file. Thisisequal to calling ct : comment (Comrment) .

1.5.6 Test Case Information Function

For each test case function there can be an extra function with the same name but without arguments. Thisis the test
case information function. It is expected to return a list of tagged tuples that specifies various properties regarding
the test case.

The following tags have special meaning:
timetrap

Sets the maximum time the test case is allowed to execute. If thistimeis exceeded, the test case fails with reason
timetrap_tinmeout. Noticethati nit_per_testcase and end_per _t est case areincluded in the
timetrap time. For details, see section Timetrap Time-Outs.

userdat a

Specifies any data related to the test case. This data can be retrieved at any time using the ct : user dat a/ 3
utility function.

sil ent _connecti ons
For details, see section Silent Connections.
require

Specifies configuration variables required by the test case. If the required configuration variables are not found
in any of the test system configuration files, the test case is skipped.

A required variable can also be given adefault valueto be used if thevariableisnot found in any configurationfile.
To specify adefault value, add atupleontheform { def aul t _confi g, Confi gVari abl eNane, Val ue}
to the test case information list (the position in thelist isirrelevant).

Examples:

testcasel() ->
[{require, ftp}
{default_config, ftp, [{ftp, "my_ftp_host"},
{usernane, "al addin"},
{password, "sesame"}]}}].

testcase2() ->
[{require, unix_telnet, unix},
{require, {unix, [telnet, usernane, password]}},
{default _config, unix, [{telnet, "ny_telnet_host"},
{usernane, "al addin"},
{password, "sesanme"}]}}].

For more information about r equi r e, see section Requiring and Reading Configuration Data in section External
Configuration Data and functionct : requi re/ 1/ 2.

Ericsson AB. All Rights Reserved.: Common Test | 13

1.5 Writing Test Suites

Specifying a default value for arequired variable can result in atest case always getting executed. This might not
be a desired behavior.

Ifti metraporrequire,orboth, isnot set specifically for aparticular test case, default values specified by function
sui t e/ 0 areused.

Tags other than the earlier mentioned are ignored by the test server.

An example of atest case information function follows:

reboot _node() ->

[
{timetrap, {seconds, 60}},

{require,interfaces},
{userdat a,
[{description, "System Upgrade: RpuAddition Nornmal Reboot Node"},
{fts,"http://someserver.ericsson.se/test_doc4711. pdf"}]}

1.

1.5.7 Test Suite Information Function

Functionsui t e/ 0 can, for example, beused in atest suite moduleto set adefaultt i net r ap valueandtor equi r e
external configuration data. If atest case, or agroup information function also specifies any of the information tags, it
overrides the default values set by sui t e/ 0. For details, see Test Case Information Function and Test Case Groups.

The following options can also be specified with the suite information list:

» styl esheet, see HTML Style Sheets
e userdat a, see Test Case Information Function
* silent_connections, see Silent Connections

An example of the suite information function follows:

suite() ->
[
{timetrap, {m nutes, 10}},
{require, gl obal _nanes},
{userdata, [{info,"This suite tests database transactions."}]},
{silent_connections,[tel net]},
{styl esheet,"db_testing.css"}

1.

1.5.8 Test Case Groups

A test case group is a set of test cases sharing configuration functions and execution properties. Test case groups are
defined by function gr oups/ 0 that should return aterm having the following syntax:

14 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Writing Test Suites

groups() -> G oupDefs
Types:

G oupDefs = [G oupDef]
G oupDef = {G oupNane, Properties, G oupsAndTest Cases}
G oupNanme = aton()
G oupsAndTest Cases = [GroupDef | {group, G oupNane} | Test Case |
{testcase, Test Case, TCRepeat Props}]
Test Case = atom()
TCRepeat Props = [{repeat, N} | {repeat_until_ok, N} | {repeat_until _fail, N}]

G oupNane is the name of the group and must be unique within the test suite module. Groups can be nested, by
including a group definition within the G- oupsAndTest Cases list of another group. Pr operti es isthelist of
execution properties for the group. The possible values are as follows:

Properties = [parallel | sequence | Shuffle | {G oupRepeat Type, N}]

Shuffle = shuffle | {shuffle, Seed}

Seed = {integer(),integer(),integer()}

GroupRepeat Type = repeat | repeat_until_all_ok | repeat_until_all_fail |
repeat _until _any_ok | repeat_until_any_fail

N = integer() | forever
Explanations:
paral | el

Conmon Test executesall test casesin the group in parallel.
sequence

The cases are executed in a sequence as described in section Sequences in section Dependencies Between Test
Cases and Suites.

shuffle
The casesin the group are executed in random order.
repeat, repeat_until _*

Orders Conmon Test to repeat execution of all the cases in the group a given number of times, or until any,
or al, casesfail or succeed.

Example:

groups() -> [{groupl, [parallel], [testla,testlb]},
{group2, [shuffle, sequence], [test2a,test2b,test2c]}].

To specify inwhich order groups are to be executed (al so with respect to test casesthat are not part of any group), add
tuples on theform { gr oup, G oupNane} totheal | / 0 list.

Example:

all () -> [testcasel, {group,groupl}, {testcase,testcase2,[{repeat,10}]}, {group, group2}].

Execution properties with agroup tupleinal | / 0: { gr oup, G- oupNane, Properti es} can aso be specified.
These properties override those specified in the group definition (see gr oups/ 0 earlier). This way, the same set of
tests can be run, but with different properties, without having to make copies of the group definition in question.

Ericsson AB. All Rights Reserved.: Common Test | 15

1.5 Writing Test Suites

If a group contains subgroups, the execution properties for these can aso be specified in the
group tuple: {group, G oupNane, Properties, SubG oups} Where, SubG oups is a list of tuples,
{ G oupNane, Properties} or{ G oupNare, Properties, SubG oups} representing the subgroups. Any
subgroups defined in gr oups/ 0 for a group, that are not specified in the SubGr oups list, executes with their
predefined properties.

Example:

groups() -> [{testsl, [], [{tests2, [], [t2a,t2b]},
{tests3, [], [t31,t3b]}]}].

To execute group t est s1 twice with different propertiesfor t est s2 each time:

all () ->
[{group, testsl, default, [{tests2, [parallel]}]},
{group, testsl, default, [{tests2, [shuffle,{repeat, 10}]1}]}].

Thisis equivalent to the following specification:

all() ->
[{group, testsl, default, [{tests2, [parallel]},
{tests3, default}]},
{group, testsl, default, [{tests2, [shuffle,{repeat, 10}]},
{tests3, default}]}].

Valuedef aul t statesthat the predefined properties are to be used.
The following example shows how to override properties in a scenario with deeply nested groups.

groups() ->
[{testsl, [], [{group, tests2}]},
{tests2, [], [{group, tests3}]},
{tests3, [{repeat,?2}], [t3a,t3b,t3c]}].

all() ->
[{group, testsl, default,
[{tests2, default,
[{tests3, [parallel,{repeat,100}]1}]1}]1}].

For ease of readability, all syntax definitions can be replaced by a function call whose return value should match the
expected syntax case.

Example:

all() ->
[{group, testsl, default, test_cases()},
{group, testsl, default, [shuffle_test(),
{tests3, default}]}].
test_cases() ->
[{tests2, [parallel]}, {tests3, default}].

shuffle_test() ->
{tests2, [shuffle,{repeat, 10}]}.

The described syntax can also be used in test specifications to change group properties at the time of execution,
without having to edit the test suite. For more information, see section Test Specifications in section Running Tests
and Analyzing Results.

16 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Writing Test Suites

As illustrated, properties can be combined. If, for example, shuffl e, repeat _until _any fail, and
sequence areall specified, the test casesin the group are executed repeatedly, and in random order, until atest case
fails. Then execution isimmediately stopped and the remaining cases are skipped.

Before execution of a group begins, the configuration functioni ni t _per _gr oup(G oupNane, Config) is
called. Thelist of tuplesreturned from thisfunction ispassed to thetest casesin the usual manner by argument Conf i g.
i nit_per_group/ 2ismeantto beused for initializations common for the test cases in the group. After execution
of the group isfinished, function end_per _gr oup(G oupName, Confi g) iscaled. Thisfunction is meant to
be used for cleaning up after i ni t _per _gr oup/ 2. If theinit function is defined, so must the end function be.

Whenever a group is executed, if i ni t _per _group and end_per _gr oup do not exist in the suite, Cormon
Test callsdummy functions (with the same names) instead. Output generated by hook functions are saved to the log
files for these dummies. For more information, see section Manipulating Tests in section Common Test Hooks.

init_per testcase/2 and end_per _testcase/ 2 are aways called for each individua test case, no
matter if the case belongs to a group or not.

The properties for a group are always printed in the top of the HTML log for i ni t _per _group/ 2. The total
execution time for a group isincluded at the bottom of the log for end_per _gr oup/ 2.

Test case groups can be nested so sets of groups can be configured with the same i nit _per _group/ 2 and
end_per _group/ 2 functions. Nested groups can be defined by including a group definition, or a group name
reference, in the test case list of another group.

Example:

groups() -> [{groupl, [shuffle], [testla
{group2, [], [test2a,test2b]},
testi1b]},
{group3, [], [{group, group4d},
{group, group5}]},
{group4, [parallel], [test4da,test4b]},
{group5, [sequence], [testb5a,test5b,test5c]}].

In the previous example, if all/ 0O returns group name references in the order [{group, groupl},
{group, group3}], the order of the configuration functions and test cases becomes the following (notice that
init_per_ testcase/2andend_per testcase/2: areasoawayscaled, but not included in thisexample
for simplification):

init_per_group(groupl, Config) -> Configl (%)
testla(Configl)
init_per_group(group2, Configl) -> Config2
test2a(Config2), test2b(Config2)
end_per _group(group2, Config2)
test 1b(Confi gl)
end_per _group(groupl, Configl)
init_per_group(group3, Config) -> Config3
init_per_group(group4, Config3) -> Config4
test4a(Configd), test4b(Configd) (**)
end_per _group(group4, Config4)
i nit_per_group(group5, Config3) -> Configh
test5a(Config5), test5b(Configh), test5c(Configb)
end_per _group(group5, Configb)
end_per _group(group3, Config3)

(*) The order of test caset est 1a,t est 1b, and gr oup?2 isundefined, asgr oupl has a shuffle property.

Ericsson AB. All Rights Reserved.: Common Test | 17

1.5 Writing Test Suites

(**) These cases are not executed in order, but in parallel.

Properties are not inherited from top-level groupsto nested subgroups. For instance, in the previous example, the test
casesin gr oup?2 are not executed in random order (which is the property of gr oup1).

1.5.9 Parallel Property and Nested Groups

If a group has a parallel property, its test cases are spawned simultaneously and get executed in parallel. However,
atest caseis not allowed to execute in parallel with end_per _gr oup/ 2, which means that the time to execute a
parallel group is equal to the execution time of the slowest test case in the group. A negative side effect of running
test casesin parallel isthat the HTML summary pages are not updated with links to the individual test case logs until
function end_per _gr oup/ 2 for the group has finished.

A group nested under a parallel group starts executing in parallel with previous (parallel) test cases (no matter what
properties the nested group has). However, as test cases are never executed in parallel withi nit _per _group/ 2
orend_per _group/ 2 of the same group, it isonly after a nested group has finished that remaining parallel cases
in the previous group become spawned.

1.5.10 Parallel Test Cases and I/O

A parallel test case has a private I/O server as its group leader. (For a description of the group leader concept, see
ERTS). The central 1/O server process, which handles the output from regular test cases and configuration functions,
does not respond to 1/0 messages during execution of parallel groups. Thisisimportant to understand to avoid certain
traps, like the following:

If aprocess, P, is spawned during execution of, for example, i ni t _per _sui t e/ 1, it inherits the group leader of
thei nit _per _suit e process. This group leader is the central 1/O server process mentioned earlier. If, at alater
time, during parallel test case execution, some event triggers process P to call i o: f or mat / 1/ 2, that call never
returns (as the group leader isin anon-responsive state) and causes P to hang.

1.5.11 Repeated Groups

A test case group can be repeated a certain number of times (specified by an integer) or indefinitely (specified
by f or ever). The repetition can also be stopped too early if any or all cases fail or succeed, that is, if any
of the properties repeat _until _any fail, repeat_until _any ok, repeat _until _all _fail, or
repeat _until _all _ok isused. If the basic r epeat property is used, status of test cases isirrelevant for the
repeat operation.

The status of asubgroup can bereturned (ok or f ai | ed), to affect the execution of the group on thelevel above. This
is accomplished by, in end_per _gr oup/ 2, looking up the value of t c_gr oup_properti es inthe Confi g
list and checking the result of the test casesin the group. If statusf ai | ed isto be returned from the group as aresult,
end_per _group/ 2 isto return the value {ret urn_group_resul t, fai | ed}. The status of a subgroup is
taken into account by Cormon Test when evaluating if execution of a group is to be repeated or not (unless the
basicr epeat property isused).

Thevalueoft c_group_properti es isalist of statustuples, each with thekey ok, ski pped, andf ai | ed. The
value of astatustupleisalist with names of test cases that have been executed with the corresponding status as resullt.

The following is an example of how to return the status from a group:

18 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Writing Test Suites

end_per_group(_G oup, Config) ->
Status = proplists:get_value(tc_group_result, Config),
case proplists:get_value(failed, Status) of
[1 -> % no failed cases
{return_group_resul t, ok};
_Failed -> % one or nore failed
{return_group_result,fail ed}
end.

Itisaso possible, in end_per _gr oup/ 2, to check the status of a subgroup (maybe to determine what status the
current group isto return). Thisisas simple asillustrated in the previous example, only the group nameis stored in a
tuple{ gr oup_resul t, G oupNane}, which can be searched for in the status lists.

Example:

end_per _group(groupl, Config) ->
Status = proplists:get_value(tc_group_result, Config),
Failed = proplists:get_value(failed, Status),
case |ists: menber ({group_result,group2}, Failed) of

true ->
{return_group_result,failed};
false ->
{return_group_resul t, ok}
end;
Note:

When atest case group isrepeated, the configuration functionsi ni t _per _group/ 2 andend_per _group/ 2
are also always called with each repetition.

1.5.12 Shuffled Test Case Order

The order in which test casesin a group are executed is under normal circumstances the same as the order specified
in the test case list in the group definition. With property shuf f | e set, however, Conmon Test instead executes
the test cases in random order.

Y ou can provide a seed value (atuple of three integers) with the shuffle property { shuf f | e, Seed} . Thisway, the
same shuffling order can be created every time the group is executed. If no seed value is specified, Conrron Test
creates a "random" seed for the shuffling operation (using the return value of er | ang: t i mest anp/ 0). The seed
value is always printed to thei ni t _per _group/ 2 log file so that it can be used to recreate the same execution
order in a subsequent test run.

| If a shuffled test case group is repeated, the seed is not reset between turns.

If asubgroup is specified in agroup with ashuf f | e property, the execution order of this subgroup in relation to the
test cases (and other subgroups) in the group, is random. The order of the test cases in the subgroup is however not
random (unless the subgroup hasashuf f | e property).

Ericsson AB. All Rights Reserved.: Common Test | 19

1.5 Writing Test Suites

1.5.13 Group Information Function

Thetest case group information function, gr oup(G- oupNan®) , serves the same purpose as the suite- and test case
information functions previously described. However, the scope for the group information function, is all test cases
and subgroupsin the group in question (G- oupNan®).

Example:

group(connection_tests) ->
[{require, | ogin_data},
{timetrap, 1000}].

The group information properties override those set with the suite information function, and can in turn be overridden
by test case information properties. For a list of valid information properties and more general information, see the
Test Case Information Function.

1.5.14 Information Functions for Init- and End-Configuration

Information functions can also be used for functionsi ni t _per _suite,end_per _suite,init_per_group,
and end_per _gr oup, and they work the same way as with the Test Case Information Function. Thisis useful, for
example, for setting timetraps and requiring external configuration data relevant only for the configuration function
in question (without affecting properties set for groups and test cases in the suite).

The information function init/end_per_suite() is caled for init/end_per_suite(Config),
and information function i nit/end_per_group(G oupNane) is cdled for init/
end_per _group(G oupNane, Confi g). However, information functions cannot be used with init/
end_per _testcase(Test Case, Confi g), asthese configuration functions execute on the test case process
and use the same properties as the test case (that is, the properties set by the test case information function,
Test Case()). For alist of valid information properties and more general information, seethe Test Case Information
Function.

1.5.15 Data and Private Directories

In the data directory, dat a_di r, the test module has its own files needed for the testing. The name of dat a_di r
is the name of the test suite followed by " dat a". For example, " sonme_pat h/ f oo_SUI TE. beant has the
datadirectory " sonme_pat h/ f oo_SUl TE dat a/ " . Usethisdirectory for portability, that is, to avoid hardcoding
directory names in your suite. Asthe data directory is stored in the same directory as your test suite, you can rely on
its existence at runtime, even if the path to your test suite directory has changed between test suite implementation
and execution.

priv_dir istheprivatedirectory for thetest cases. Thisdirectory can be used whenever atest case (or configuration
function) needs to write something to file. The name of the private directory is generated by Conmon Test , which
also creates the directory.

By default, Cormon Test createsonecentral private directory per test run, shared by all test cases. Thisisnot aways
suitable. Especidly if the same test cases are executed multiple times during atest run (that is, if they belong to atest
case group with property r epeat) and there is arisk that filesin the private directory get overwritten. Under these
circumstances, Conmon Test can be configured to create one dedicated private directory per test case and execution
instead. This is accomplished with the flag/optioncr eat e_pri v_di r (to be used withthect _r un program, the
ct:run_test/ 1 function, or astest specification term). There are three possible values for this option as follows:

e auto_per_run
e auto_per_tc
* manual _per _tc

20 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Writing Test Suites

The first value indicates the default pri v_di r behavior, that is, one private directory created per test run. The two
latter values tell Conmron Test to generate a unique test directory name per test case and execution. If the auto
version is used, all private directories are created automatically. This can become very inefficient for test runs with
many test cases or repetitions, or both. Therefore, if the manual version is used instead, the test case must tell Conmon
Test tocreatepri v_di r whenit needsit. It does this by calling the function ct : make_priv_dir/O0.

Do not depend on the current working directory for reading and writing datafiles, asthisisnot portable. All scratch
files are to be written in the pri v_di r and all data files are to be located in dat a_di r . Also, the Cormon
Test server setsthe current working directory to the test case log directory at the start of every case.

1.5.16 Execution Environment

Each test case is executed by a dedicated Erlang process. The process is spawned when the test case
starts, and terminated when the test case is finished. The configuration functions i nit _per testcase and
end_per _t est case execute on the same process as the test case.

Theconfiguration functionsi ni t _per _suit eandend_per _sui t e execute, liketest cases, on dedicated Erlang
processes.

1.5.17 Timetrap Time-Outs

The default time limit for a test case is 30 minutes, unless ati netr ap is specified either by the suite-, group-,
or test case information function. The timetrap time-out value defined by suit e/ 0 is the value that is used
for each test case in the suite (and for the configuration functionsi ni t _per_suite/ 1, end_per_suite/1,
i nit_per_group/2,andend_per _group/ 2). A timetrap value defined by gr oup(G oupNane) overrides
onedefined by sui t e() andisused for each test casein group G- oupNane, and any of its subgroups. If atimetrap
value is defined by gr oup/ 1 for a subgroup, it overrides that of its higher level groups. Timetrap values set by
individual test cases (by the test case information function) override both group- and suite- level timetraps.

A timetrap can also be set or reset dynamically during the execution of atest case, or configuration function. Thisis
doneby callingct : ti nmet rap/ 1. Thisfunction cancels the current timetrap and starts a new one (that stays active
until time-out, or end of the current function).

Timetrap values can be extended with a multiplier value specified at startup with optionmul ti ply_ti netraps.
It isalso possible to let the test server decide to scale up timetrap time-out values automatically. That is, if tools such
ascover ortrace are running during the test. This feature is disabled by default and can be enabled with start
optionscal e_ti netraps.

If atest case needs to suspend itself for atime that also gets multiplied by nul ti ply_ti net raps (and possibly
asoscadedupif scal e_ti netraps isenabled), thefunctionct : sl eep/ 1 can be used (instead of, for example,
tinmer:sleep/l).

A function (f un/ 0 or { Mod, Func, Args} (MFA) tuple) can be specified as timetrap value in the suite-, group-
and test case information function, and as argument to functionct : ti met r ap/ 1.

Examples:

{tinmetrap,{ny_test utils,tinmetrap, [?MODULE, system start]}}
ct:timetrap(fun() -> ny_tinetrap(Test CaseNane, Config) end)
The user timetrap function can be used for two things as follows:

e Toact asatimetrap. Thetime-out is triggered when the function returns.
e Toreturn atimetrap time value (other than a function).

Ericsson AB. All Rights Reserved.: Common Test | 21

1.5 Writing Test Suites

Before execution of the timetrap function (which is performed on a parallel, dedicated timetrap process), Conmron
Test cancels any previously set timer for the test case or configuration function. When the timetrap function
returns, the time-out is triggered, unless the return value is a valid timetrap time, such as an integer, or a
{SecM nOr Hour Tag, Ti ne} tuple (for details, see module ct_suite). If atime value isreturned, a new timetrap is
started to generate a time-out after the specified time.

The user timetrap function can return a time value after a delay. The effective timetrap time is then the delay time
plusthe returned time.

1.5.18 Logging - Categories and Verbosity Levels
Conmon Test provides the following three main functions for printing strings:

e ct:log(Category, Inportance, Format, FormatArgs, Opts)
e ct:print(Category, Inportance, Format, FormatArgs)
e ct:pal (Category, |nportance, Format, FormatArgs)

Thel og/ 1, 2, 3, 4, 5 function prints a string to the test case log file. The pri nt/ 1, 2, 3, 4 function prints the
stringtoscreen. Thepal / 1, 2, 3, 4 function printsthe samestring bothto file and screen. Thefunctionsare described
in module ct.

The optional Cat egor y argument can be used to categorize the log printout. Categories can be used for two things
asfollows:

* To compare the importance of the printout to a specific verbosity level.
* Toformat the printout according to a user-specific HTML Style Sheet (CSS).

Argument | mpor t ance specifies alevel of importance that, compared to a verbosity level (general and/or set per
category), determines if the printout is to be visible. | mpor t ance is any integer in the range 0..99. Predefined
constants exist in the ct . hr| header file. The default importance level, ?STD_| MPORTANCE (used if argument
| npor t ance isnot provided), is50. Thisis aso the importance used for standard 1/0O, for example, from printouts
madewithi o: format/ 2,i o: put _chars/ 1, and so on.

| mpor t ance is compared to a verbosity level set by the ver bosi ty start flag/option. The level can be set per
category or generally, or both. If ver bosi t y isnot set by theuser, alevel of 100 (?MAX_VERBOSI TY =all printouts
visible) isused as default value. Conmron Test performs the following test:

I nportance >= (100-VerbositylLevel)

The constant ?STD_VERBOSI TY hasvalue 50 (seect . hr 1). At thislevel, all standard 1/O gets printed. If alower
verbosity level is set, standard /O printouts are ignored. Verbosity level O effectively turns all logging off (except
from printouts made by Conmon Test itself).

The general verbosity level isnot associated with any particular category. Thislevel setsthe threshold for the standard
I/O printouts, uncategorized ct : | og/ pri nt/ pal printouts, and printouts for categories with undefined verbosity
level.

Examples:
Some printouts during test case execution:

io:format ("1. Standard IO, inportance = ~w-n", [?STD_| MPORTANCE]),

ct:log("2. Uncategorized, inmportance = ~w', [?STD_| MPORTANCE]),

ct:log(info, "3. Categorized info, inportance = ~w', [?STD_| MPORTANCE]),

ct:log(info, ?LOWI MPORTANCE, "4. Categorized info, inmportance = ~w', [?LOW.| MPORTANCE]),
ct:log(error, ?H _I MPORTANCE, "5. Categorized error, inportance = ~w', [?H _I MPORTANCE]),
ct:log(error, ?MAX_| MPORTANCE, "6. Categorized error, inportance = ~w', [?MAX_| MPORTANCE]),

22 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Writing Test Suites

If starting the test with a general verbosity level of 50 (?STD_VERBOSI TY):

$ ct_run -verbosity 50

the following is printed:

Standard |1 O inportance = 50

Uncat egori zed, inportance = 50

Cat egori zed info, inportance = 50
Cat egori zed error, inportance = 75
Cat egori zed error, inportance = 99

e G @9 [=

If starting the test with:

$ ct_run -verbosity 1 and info 75
the following is printed:
3. Categorized info, inportance = 50

4. Categorized info, inportance = 25
6. Categorized error, inportance = 99

Note that the category argument is not required in order to only specify the importance of a printout. Example:

ct: pal (?LOW.| MPORTANCE, "“Info report: ~p", [Info])

Or perhaps in combination with constants:

-define(I NFO, ?LOW | MPORTANCE) .
-defi ne(ERROR, ?HI _| MPORTANCE) .

ct:log(?INFO, "Info report: ~p*, [Info])
ct:pal (?ERROR, "Error report: ~p", [Error])

Thefunctionsct : set _verbosity/2andct: get_verbosity/ 1 may be used to modify and read verbosity
levels during test execution.

Thearguments For nat and For mat Argsinct: | og/ pri nt/ pal areawayspassed ontothe STDLIB function
i o: fornmat/ 3 (For details, seethei o manua page).

ct:pal/4 andct: | og/5 add headers to strings being printed to the log file. The strings are also wrapped in div
tags with a CSS class attribute, so that stylesheet formatting can be applied. To disable this feature for a printout (i.e.
toget aresult similar tousingi o: f or nat/ 2), cal ct: | og/ 5 withtheno_css option.

How categories can be mapped to CSS tags is documented in section HTML Style Sheets in section Running Tests
and Analyzing Resullts.

Common Test will escape special HTML characters (<, >and &) in printoutsto thelog file madewith ct : pal / 4 and
i o: format/ 2.Inorder to print stringswith HTML tagstothelog, usethect : | og/ 3, 4, 5 function. The character
escaping feature is per default disabled for ct : | og/ 3, 4, 5 but can be enabled with theesc_char s optionin the
Opt s list, seect : 1 0g/ 3, 4, 5.

If the character escaping feature needsto be disabled (typically for backwards compatibility reasons), usethect _r un
start flag- no_esc_char s, orthect : run_t est/ 1 start option { esc_char s, Bool } (thisstart optionisalso
supported in test specifications).

Ericsson AB. All Rights Reserved.: Common Test | 23

1.6 Test Structure

For more information about log files, see section Log Files in section Running Tests and Analyzing Results.

1.5.19 lllegal Dependencies

Even though it is highly efficient to write test suites with the Common Test framework, mistakes can be made,
mainly because of illegal dependencies. Some of the more frequent mistakes from our own experience with running
the Erlang/OTP test suites follows:

Depending on current directory, and writing there:

Thisis a common error in test suites. It is assumed that the current directory is the same as the author used as
current directory when the test case was devel oped. Many test cases even try to write scratch filesto thisdirectory.
Instead dat a_di r andpri v_di r areto be used to locate data and for writing scratch files.

Depending on execution order:
During development of test suites, make no assumptions on the execution order of the test cases or suites. For

example, atest case must not assumethat aserver it dependsonisaready started by aprevioustest case. Reasons
for thisfollows:

e The user/operator can specify the order at will, and maybe a different execution order is sometimes more
relevant or efficient.

» |If the user specifies awhole directory of test suites for the test, the execution order of the suites depends on
how thefiles are listed by the operating system, which varies between systems.

« |f auser wantsto run only asubset of atest suite, there is no way one test case could successfully depend
on another.

Depending on Unix:

Running Unix commands through os: cnd arelikely not to work on non-Unix platforms.

Nested test cases:

Starting a test case from another not only tests the same thing twice, but also makes it harder to follow what is

being tested. Also, if the called test case fails for some reason, so do the caller. This way, one error gives cause
to several error reports, which isto be avoided.

Functionality common for many test case functions can be implemented in common help functions. If these
functions are useful for test cases across suites, put the help functions into common help modules.

Failure to crash or exit when things go wrong:

Making requests without checking that the return value indicates success can be OK if the test case failslater, but

it is never acceptable just to print an error message (into the log file) and return successfully. Such test cases do
harm, asthey create afalse sense of security when overviewing the test results.

Messing up for subsegquent test cases:

Test cases are to restore as much of the execution environment as possible, so that subsequent test cases do not
crash because of their execution order. The function end_per _t est case issuitablefor this.

1.6 Test Structure

1.6.1 General

A test is performed by running one or more test suites. A test suite consists of test cases, configuration functions, and
information functions. Test cases can be grouped in so called test case groups. A test suite is an Erlang module and
test cases are implemented as Erlang functions. Test suites are stored in test directories.

24 | Ericsson AB. All Rights Reserved.: Common Test

1.6 Test Structure

1.6.2 Skipping Test Cases

Certain test cases can be skipped, for example, if you know beforehand that a specific test case fails. The reason can
be functionality that is not yet implemented, a bug that is known but not yet fixed, or some functionality that does not
work or is not applicable on a specific platform.

Test cases can be skipped in the following ways:

e Usingski p_suites andski p_cases termsin test specifications.
e Returning{ ski p, Reason} fromfunctioni nit_per _testcase/2orinit_per _suite/l.

* Returning { ski p, Reason} from the execution clause of the test case. The execution clause is called, so the
author must ensure that the test case does not run.

When atest caseis skipped, it is noted as SKI PPED in the HTML log.

1.6.3 Definition of Terms
Auto-skipped test case

When a configuration function fails (that is, terminates unexpectedly), the test cases depending on the
configuration function are skipped automatically by Commron Test . The status of the test cases is then "auto-
skipped". Test cases are also "auto-skipped" by Conmron Test if the required configuration datais unavailable
at runtime.

Configuration function

A function in a test suite that is meant to be used for setting up, cleaning up, and/or verifying the state and
environment on the System Under Test (SUT) and/or the Cormon Test host node, so that atest case (or a set
of test cases) can execute correctly.

Configuration file

A file containing datarelated to atest and/or an SUT, for example, protocol server addresses, client login details,
and hardware interface addresses. That is, any data that is to be handled as variable in the suite and not be hard-
coded.

Configuration variable
A name (an Erlang atom) associated with a data value read from a configuration file.
data dir

Data directory for atest suite. This directory contains any files used by the test suite, for example, extra Erlang
modules, binaries, or datafiles.

Information function

A function in atest suite that returns alist of properties (read by the Conmon Test server) that describes the
conditions for executing the test casesin the stite.

Major logfile
An overview and summary log file for one or more test suites.
Minor logfile
A log file for one particular test case. Also called the test case log file.
priv_dir
Private directory for atest suite. This directory isto be used when the test suite needsto write to files.

Ericsson AB. All Rights Reserved.: Common Test | 25

1.7 Examples and Templates

ct_run

The name of an executable program that can be used as an interface for specifying and running testswith Cormon
Test .

Test case
A singletest included in atest suite. A test caseisimplemented as afunction in atest suite module.
Test case group

A set of test cases sharing configuration functions and execution properties. The execution properties specify if
the test cases in the group are to be executed in random order, in parallel, or in sequence, and if the execution
of the group is be repeated. Test case groups can also be nested. That is, a group can, besides test cases, contain
subgroups.

Test suite

An Erlang module containing a collection of test cases for a specific functional area.
Test directory

A directory containing one or more test suite modules, that is, a group of test suites.
Argument Confi g

A list of key-va